Changes

94 bytes added ,  20:24, 29 May 2019
m
no edit summary
Line 1: Line 1: −
[[File:Hollywood.jpg|thumb|right]]
+
[[File:Hollywood.jpg|thumb|right|The Hollywood GPU as it appears on the Wii's motherboard.]]
 
{{DISPLAYTITLE:Hollywood}}
 
{{DISPLAYTITLE:Hollywood}}
   Line 37: Line 37:  
The resolution is capped at an absolute maximum of 640x480; most games use a figure close to this, such as 640x460, with slightly reduced vertical resolution to compensate for "overscan" on CRT displays. Fortunately, this was used to the Wii's advantage in many cases; despite the lack of definition and clarity, developers used this lack of clarity to hide shortcuts and get away with more than they would have been able to on PS3 or 360. The lower resolution also mitigated the issue of pixel fillrate and memory bandwidth.  
 
The resolution is capped at an absolute maximum of 640x480; most games use a figure close to this, such as 640x460, with slightly reduced vertical resolution to compensate for "overscan" on CRT displays. Fortunately, this was used to the Wii's advantage in many cases; despite the lack of definition and clarity, developers used this lack of clarity to hide shortcuts and get away with more than they would have been able to on PS3 or 360. The lower resolution also mitigated the issue of pixel fillrate and memory bandwidth.  
   −
[[File:The-conduit-2-20100415105252907-000.jpg|thumb|right]]
+
[[File:The-conduit-2-20100415105252907-000.jpg|thumb|right|An in-game screenshot of Conduit 2.]]
    
The TEV was used to overcome the lack of pixel and vertex shaders. While having no hardware functionality to replace or use standard shaders was a pain initially, developers began to use the TEV to substitute and in some cases, even exceed what may have been possible on a similar system with pixel and vertex shaders. A high-profile example of this is The Conduit and Conduit 2 by High Voltage Software; using their own Quantum3 engine. The engine supports dynamic bump-mapping (via tangent space normals or embossing), reflection and refraction (via real-time cube or spherical environmental maps), light/shadow maps, projected texture lights, specular and Fresnel effects, emissive and iridescent materials, advanced alpha blends, light beams/shafts, gloss and detail mapping, seamless resource streaming, projected shadows, heat distortion and motion blur, interactive water with dual-wave channels and complex surface effects, animated textures, and more.
 
The TEV was used to overcome the lack of pixel and vertex shaders. While having no hardware functionality to replace or use standard shaders was a pain initially, developers began to use the TEV to substitute and in some cases, even exceed what may have been possible on a similar system with pixel and vertex shaders. A high-profile example of this is The Conduit and Conduit 2 by High Voltage Software; using their own Quantum3 engine. The engine supports dynamic bump-mapping (via tangent space normals or embossing), reflection and refraction (via real-time cube or spherical environmental maps), light/shadow maps, projected texture lights, specular and Fresnel effects, emissive and iridescent materials, advanced alpha blends, light beams/shafts, gloss and detail mapping, seamless resource streaming, projected shadows, heat distortion and motion blur, interactive water with dual-wave channels and complex surface effects, animated textures, and more.
11

edits